Есть ли мембрана у бактерий

Строение бактериальной клетки

Есть ли мембрана у бактерий

Автор статьи Лукьянова А.А.

Бактериальная клетка в целом устроена достаточно просто.

Она отделена от внешней среды цитоплазматической мембраной и заполнена цитоплазмой, в которой располагается зона нуклеоида, включающая кольцевую молекулу ДНК, с которой может «свисать» транскрибируемая мРНК, к которой, в свою очередь прикреплены рибосомы, синтезирующие на ее матрице белок одновременно с процессом синтеза самой матрицы.

Одновременно ДНК может быть связана с белками, осуществляющими ее репликацию и репарацию. Рибосомы бактерий меньше эукариотических и имеют конэфициент седиментации 70S. Они, как и эукариотические образованы двумя субъединицами – малой (30S), в состав которой входит 16S рРНК и  большую – 50S, включающую молекулы 23S и 5S рРНК.

На фотографии, полученной с помощью трансмиссионной микроскопии (рис.1), отчетливо видна светлая зона, в которой находится генетический аппарат и происходят процессы транскрипции и трансляции. Рибосомы видны как мелкие зернистые включения.

Рисунок 1. Микрофотография бактериальной клетки

Чаще всего в бактериальной клетке геном представлен только одной молекулой ДНК, которая замкнута в кольцо, однако есть и исключения. У некоторых бактерий молекул ДНК может быть несколько.

Например, Deinococus radiodurans, бактерия, известная своей феноменальной устойчивостью к радиации и способная спокойно выдерживать дозу радиации в 2 000 раз превышающую летальную дозу для человека, имеет две копии своей геномной ДНК. Известны бактерии, имеющие три или четыре копии.

У некоторых видов ДНК может быть не замкнула в кольцо, а некоторые Agrobacterium содержат одну кольцевую и одну линейную ДНК.

Помимо нуклеоида, генетический материал может быть представлен в клетке в виде дополнительных маленьких кольцевых молекул ДНК – плазмид.

  Плазмиды реплицируются независимо от нуклеоида и зачастую содержат полезные для клетки гены, дающие клетке, например, устойчивость к антибиотикам способность к усвоению новых субстратов[1], способность к конъюгации и многое другое.

Плазмиды могут передаваться как от материнской клетке к дочерней, так и путем горизонтального переноса быть переданы от одной клетке другой.

Бактериальная клетка чаще всего окружена не только мембраной, но и клеточной стенкой, причем по типу устройства клеточной стенки бактерий делят на две группы – грамположительные и грамотрицательные[2].

Клеточная стенка бактерий образована пептидогликаном – муреином.

На молекулярном уровне муреиновый слой представляет собой сеть, образованную молекулами N-ацетилглюкозамина и N-ацетилмурамовой кислоты, сшитыех между собой в длинные цепи β-1-4-гликозидными связями, соседние цепи, в свою очередь соединяются поперечными пептидными мостиками (Рис.2). Так получается одна большая сеть, окружающая клетку.

Рисунок 2. Схема строения муреина

Грамположительные бактерии имеют толстую клеточную стенку, располагающуюся поверх мембраны. Муреин поперечно прошит еще одним типом молекул – тейхоевыми и липотейхоевыми (если они соединены с липидами мембраны) кислотами.

Считается, что эти молекулы придают клеточной стенке эластичность при поперечном сжатии и растяжении, действуя как пружины.

Поскольку слой муреина толстый, он легко окрашивается по методу Грама: клетки выглядят ярко-фиолетовыми, поскольку краситель (генциановый или метиловый фиолетовый) застревает в слое клеточной стенки.

Рисунок 3. Фиолетовые клетки – грамположительные, розовые – грамотрицательные

У грамотрицательных бактерий слой муреина очень тонкий (исключение составляют цианобактерии), поэтому при окрашивании по Граму фиолетовый краситель вымывается, а клетки окрашиваются в цвет второго красителя (рис. 3).

Рисунок 4. Схема строения бактериальной клетки. «Гр+» – грамположительные клетки, «Гр-» – грамотрицательные клетки.

https://www.youtube.com/watch?v=KKK-ueKi_M0

Клеточная стенка грамотрицательных бактерий покрыта сверху еще одной, внешней, мембраной, прикрепленной к пептидокликану липопротеинами. Пространство между цитоплазматической мембраной и внешней мембраной называется периплазмой.

Внешняя мембрана содержит липополипротеины, липополисахариды (ЛПС), а также белки, образующие гидрофильные поры. Компоненты внешней мембраны зачастую отвечают за взаимодействие клетки со внешней средой.

Она содержит антигены, рецепторы фагов, молекулы, участвующие в конъюгации и др.

Поскольку у грамположительных и грамотрицательных клеток различается строение покровов (Рис. 4, сверху), отличается и аппарат, заякоривающий жгутик в клеточных покровах (Рис.4, снизу).

Жгутик грамположительных бактерий закрепляется в мембране двумя белковыми кольцами (S-кольцо и M-кольцо) и приводится в движение системой белков, которые, потребляя энергию, заставляют нить крутиться. У грамотрицательных бактерий в дополнение к этой конструкции есть еще два кольца, дополнительно фиксирующие жгутик во внешней мембране и клеточной стенке.

Сам по себе жгутик у бактерий состоит из белка флагеллина, субъединицы которого соединяются в спираль, имеющую внутри полость и формирующие нить. Нить гибко крепится к заякоривающему и придающему ей кручение аппарату, с помощью крючка.

Помимо жгутиков на поверхности клеток бактерий могут быть и другие выросты – пили. Это белковые ворсинки, позволяющие бактериям присоединяться к различным поверхностям (повышая гидрофобность клетки) либо принимающие участие в транспорте метаболитов и процессе конъюгации (F-пили).

Бактериальная клетка обычно не содержит никаких мембранных структур внутри, в том числе и везикул, но могут быть различного рода включения (запасные липиды, сера) и газовые пузырьки, окруженные белковой мембраной.

Без мембраны клетка может запасать молекулы полисахаридов, цианофицин (как депо азота), а также может содержать карбоксисомы – пузырьки, содержащий фермент РуБисКО[3], необходимый для фиксации углекислого газа в Цикле Кальвина.

[1] В микробиологии этот термин означает питательное вещество, которое может быть усвоено микроорганизмом [2] Такое название групп происходит от фамилии врача Г.К. Грама, разработавшего метод окраски клеточных стенок бактерий, позволяющий различать клетки с различным типом строения клеточной стенки. [3] Рибулозобисфосфаткарбоксилаза/оксигеназа

Источник: https://biocpm.ru/stroenie-bakterialnoy-kletki

Имеют ли бактерии ядро, или особенности строения прокариотических клеток – Мир Бактерий

Есть ли мембрана у бактерий

27.05.2019

Несмотря на все многообразие клеток, встречается лишь два типа их структурной организации – прокариоты и эукариоты.

Прокариоты (от лат. pro – перед, раньше и греч. karyon – ядро) обладают более простым строением, а эукариоты (от греч.

eu – полностью, хорошо и karyon – ядро) – более сложным и разнообразным. У прокариот имеется ядерное вещество (кольцевая ДНК), не оформленное в ядро. ДНК-содержащую зону в клетке прокариот называют нуклеоидом (от лат. nucleus – ядро и греч. eidos – вид), то есть «похожим на ядро».

Обычно нуклеоид прикреплен к внутренней части клеточной мембраны, но не отграничен мембраной от цитоплазмы.

Прокариотический тип клетки – свойство древних одноклеточных организмов (бактерий и архебактерий).

Лишь некоторые виды бактерий (например, цианобактерии) образуют небольшие цепочки или комочки из нескольких клеток. Эукариотический тип свойствен и одноклеточным, и различным многоклеточным организмам.

Разница между двумя типами организации клетки столь велика, что послужила основанием разделить принадлежащие к ним организмы на два надцарства: Доядерные, или Прокариоты, и Ядерные, или Эукариоты. Особенности прокариот и эукариот представлены в таблице.

Отличительные характеристики прокариот и эукариот

Клетки характеризуются очень малыми размерами и имеют самое простое строение, так как сохраняют черты первых живых организмов, возникших на Земле. Они имеют нуклеоид, неподвижную цитоплазму, клеточную мембрану и клеточную стенку. В цитоплазме содержатся немного мелких рибосом и различные включения (гранулы липидов и других веществ).

Некоторые участки цитоплазмы пронизаны мембранами, образующимися за счет впячивания клеточной мембраны внутрь клетки. Молекула ДНК имеет кольцевую форму и размещается непосредственно в цитоплазме, ее называют нуклеоидом. Нуклеоид не отделен мембранной оболочкой от цитоплазмы.

Помимо этой молекулы ДНК в клетке прокариот находятся короткие кольцевые молекулы ДНК – плазмиды.

Схема строения клетки бактерии: А – поверхностные структуры: 1 – клеточная стенка; 2 – капсула, или слизистый слой; 3 – жгутики; 4 – ворсинки; Б – цитоплазматические структуры: 5 – цитоплазматическая мембрана; 6 – цитоплазма; 7 – нуклеоид; 8 – рибосомы; 9 – пластинчатые тилакоиды; 10 – трубчатые тилакоиды; 11 – мезосома; 12 – аэросомы; 13 – карбоксисомы; В – запасные вещества: 14 – полифосфаты; 15 – полисахариды; 16 – включения серы; 17 – жировые капли; 18 – плазмидаКлеточная стенка – важный и обязательный структурный элемент большинства прокариотических клеток, располагающийся под капсулой или слизистым чехлом. Клеточная стенка придает клеткам определенную форму и служит механическим барьером между протопластом и внешней средой. На долю клеточной стенки приходится до 50 % сухих веществ клетки.

У разных прокариот клеточная стенка имеет различное строение. У грамположительных бактерий она имеет толщину от 20 до 80 нм и плотно прилегает к цитоплазматической мембране. Основной структурный компонент клеточной стенки – гликопептид муреин. Муреин образует многослойный (до 10 слоев) каркас, прошитый белковыми мостиками.

Клеточная стенка грамотрицательных бактерий состоит из 1–2 слоев гликопептида (толщиной 2–8 нм), но сверху располагается наружная мембрана (толщиной 8–10 нм), состоящая из фосфолипидов, типичных для элементарных мембран.

Наружная мембрана, как правило, имеет волнистую форму, поэтому в их клеточной стенке наблюдаются промежутки между гликопептидным слоем и наружной мембраной и между клеточной стенкой и цитоплазматической мембраной (рис. 100).

Схематическое строение клеточной стенки грамположительных (А) и грамотрицательных (Б) бактерий: У – цитоплазматическая мембрана; 2 – муреин; 3 – периплазматическое пространство; 4 – наружная мембрана; 5 – нуклеоид; 6 – мезосома

Наружная мембрана препятствует проникновению в клетку токсических веществ, поэтому грамотрицательные бактерии более устойчивы к действию некоторых ядов, химических веществ, ферментов и антибиотиков, чем грамположительные.

Мембраны. Цитоплазматическая мембрана у большинства прокариот– единственная мембрана клетки.

Она способна образовывать различной формы многочисленные впячивания вовнутрь цитоплазмы – мезосомы. На них размещаются ферменты и фотосинтезирующие пигменты (у фототрофов).

Мезосомы также участвуют в формировании перегородки при делении клетки и способствуют разделению ее содержимого на относительно обособленные отсеки, обеспечивая этим более благоприятные условия для протекания ферментативных процессов.

Цитоплазма прокариот неподвижна. Содержит набор растворимых РНК, ферментных белков, продуктов и субстратов метаболических реакций.

В ней находятся генетический аппарат, рибосомы и включения разной химической природы и функционального назначения, например аэросомы (газовые вакуоли). Имеющийся в них газ аналогичен составу газов внешней среды. Аэросомы обычно встречаются у бактерий – обитателей водоемов. Наполненные газом вакуоли снижают удельный вес клетки и поддерживают ее во взвешенном состоянии.

Прокариоты не имеют хлоропластов, но у них есть многочисленные тилакоиды – внутрицитоплазматические мембраны различной организации (пластинчатые, трубчатые и смешанного типа), на которых расположены фотосинтезирующие пигменты и переносчики электронов.

Рибосомы.

Количество рибосом в клетке зависит от интенсивности процессов белкового синтеза и колеблется от 5 до 90 тыс. Общая масса рибосом может составлять примерно четверть всей клеточной массы, а количество рибосомной РНК (рРНК) – до 85 % всей бактериальной РНК.

Генетический аппарат.

Нуклеоид прокариот довольно четко отграничен от цитоплазмы, обычно занимает ее центральную область и представлен единственной нитью ДНК диаметром около 2 нм. Бактериальная ДНК (бактериальная хромосома) имеет форму замкнутого кольца. Генетическая информация клетки представлена также плазмидами – небольшими автономными фрагментами ДНК, размещенными в разных местах цитоплазмы.

Плазмиды имеют большое значение в жизни бактерий, так как обеспечивают их устойчивость к различным лекарственным препаратам. Большинство клеток бактерий не содержит гистонов, высокоспирализованную организацию участков хромосомы в них обеспечивают молекулы РНК.

У бактерий кольцевая хромосома нуклеоида прикреплена к цитоплазматической мембране в так называемой точке прикрепления.

Во время деления клетки цитоплазматический белок образует клеточную перетяжку между реплицированными молекулами ДНК, благодаря которой клетки отделяются друг от друга, а расходящаяся мембрана «растаскивает» прикрепленные к ней реплицированные хромосомы по дочерним клеткам.

Таким образом, при делении бактериальной клетки генетический материал также равномерно распределяется по дочерним клеткам, как и в результате митоза эукариот.

Расхождение бактериальных клеток при делении: 1 – молекула ДНК на плазматической мембране; 2 – растущая клетка с удвоенной ДНК; 3 – белковая перетяжка; 4 – образовавшиеся дочерние клеткиКапсулы, слизистые слои, или чехлы, – части поверхностной структуры прокариот. Они являются результатом биосинтетических процессов в клетке.

Капсула – слизистое аморфное образование, обволакивающее клетку и сохраняющее связь с клеточной стенкой. Слизистый слой имеет сходный с капсулой вид, но легко отделяется от поверхности клетки. Они защищают клетку от механических повреждений, высыхания, создают дополнительный осмотический барьер, служат препятствием для проникновения вирусов, источником запасных питательных веществ.

С помощью слизи осуществляется связь между соседними клетками в колонии, прикрепление клеток к субстрату.

Споры бактерий. При неблагоприятных условиях некоторые виды бактерий образуют внутри клетки споры. Споры выдерживают длительное высыхание, нагревание свыше 100 °C и охлаждение до предельных температур.

Столь высокая устойчивость споры достигается благодаря образованию вокруг клетки очень плотной оболочки, в основном состоящей из белковых веществ, обогащенных цистином. Ее объем достигает 50 % всего объема споры. Попав в благоприятную питательную среду, споры прорастают. Сначала они набухают, затем через образовавшееся отверстие в оболочке споры клетка выходит в окружающую среду.

Спора у бактерии не является репродуктивным органом, а служит формой адаптации – защиты от неблагоприятных условий.

Жгутики обеспечивают движение прокариотической клетки в жидкой среде. Есть одножгутиковые и полностью покрытые жгутиками клетки (до 1000 жгутиков).

Жгутики прокариот представляют собой полые цилиндры из белка флагеллина, толщиной 10–20 нм, обычно скрученные против часовой стрелки в жесткую спираль. Основание такого жгутика образовано несколькими белками, которые могут вращаться друг относительно друга, обеспечивая вращение самого жгутика.

Ворсинки (фимбрии, пили) – поверхностные структуры бактериальной клетки, не связанные с движением; они имеются и у подвижных, и у неподвижных форм. У бактерии кишечной палочки обнаружены ворсинки общего типа и половые.

Ворсинки общего типа придают бактериям свойство гидрофобности (несмачиваемости), обеспечивают их прикрепление к клеткам растений, грибов и неорганическим частицам, участвуют в транспорте метаболитов.

Половые ворсинки (пили) в половом процессе некоторых бактерий способствуют контакту между клетками и выступают в качестве конъюгационного тоннеля, по которому происходит передача ДНК – внехромосомного наследственного материала в форме плазмид.

Таким образом, несмотря на примитивность прокариотических клеток, они обладают сложным строением и сложным механизмом осуществления процессов жизнедеятельности. По разнообразию своей физиологии бактерии превосходят все остальные живые формы.

Источник:

Open Library – открытая библиотека учебной информации

Ядро

Ядро — важнейшая структура в клетках эукариот. Оно представляет собой центр управления клетки и хранилище ин­формации о ней. В ядре содержится более 90[VV75] % клеточной ДНК — вещества, являющегося носителœем наследственной информации.

Роль ядра в управлении процессами жизнедеятельности клеток была доказана экспериментально. В начале 1930-х годов ученый И. Гиммерлинг в ка­честве объекта для опытов по регенерации выбрал зелœе­ную водоросль ацетабулярию (рис. ).

Эта водоросль, обитающая в Средиземном море, замечательна тем, что представляет собой одну гигантскую (размером до 5 см) клетку сложной формы. Клетка имеет корнеподобные ризоиды, тонкий стебелœек и сложной формы шляпку, в которой образуются споры.

Имеется единственное круп­ное ядро, расположенное у основания ножки.

Гиммерлинг пересадил ядро от одного вида ацетабулярии другому, с иной формой шляпки (см. рис. ). В случае если затем шляпку удалить, она вырастет снова, но при этом ее форма окажется не такой, как прежде. Отросшая шляпка будет иметь форму, харак­терную для вида, от которого взято ядро.

Замечатель­но, что если у молодой ацетабулярии удалить ядро за несколько недель до образования шляпки, то она всœе-таки образуется (хотя потом клетка и гибнет). В случае если отрезать кончик стебелька, из него регенерируют сте­белœек и шляпка.

А вот из средней части стебелька не вырастает ничего.

Гиммерлинг предположил, что ядро управляет раз­витием шляпки с помощью каких-то веществ, выделяе­мых в цитоплазму. Эти вещества транспортируются по стебельку в его верхнюю часть и накапливаются там. Вот почему даже при удалении ядра может происходить регенерация. Возникла идея, что ядро управляет жиз­нью клетки с помощью веществ — «инструкций», посы­лаемых в цитоплазму.

Как в дальнейшем выяснилось, такими веществами являются молекулы информационной РНК. Именно они передают инструкции ядра в цитоплазму и обеспечивают синтез необходимых ферментов, управляющих жизнедеятельностью клетки, в том числе процессами регене­рации.

Большинство клеток имеет одно ядро, изредка встречаются двухъядерные (клетки печени, инфузория-туфелька) и много­ядерные (многие протисты, клетки грибов, поперечнополосатые мышечные волокна). Неко­торые клетки в зрелом состоянии не имеют ядра. Таковыми являются эритроциты млекопитающих и клетки ситовидных трубок цвет­ковых растений.

Обычно ядро имеет шаровидную форму. Оно может быть также линзовидным, веретеновидным и даже многолопастным (в клетках зернистых лейкоцитов). В животной клетке ядро обычно расположено в центре, а в рас­тительной, как правило, находится на периферии клетки (центральную часть обычно занимает крупная вакуоль).

Источник: https://dmnesterov.ru/drugoe/imeyut-li-bakterii-yadro-ili-osobennosti-stroeniya-prokarioticheskih-kletok.html

Мембрана бактерий: строение, функции, из чего состоит

Есть ли мембрана у бактерий

› Всё о бактериях › Органоиды

Несмотря на то, что между прокариотами и эукариотами существует много фундаментальных различий, есть ряд признаков, по которым эти две разные биосистемы очень схожи между собой.

Общее для ядерных клеточных единиц и доядерных организмов – наличие белкового барьера между внутренней средой клетки и внешним пространством, в котором клетка существует.

Есть гипотеза, что формирование в процессе эволюции клеточной мембраны у бактерии, как у первого живого организма, – одно из важнейших изобретений природы, в результате которого стало возможным дальнейшее усложнение внутриклеточных процессов.

Основные функции

В бактериальной клетке, как в живом самостоятельном организме, протекают все процессы, связанные с обеспечением клеточных структур энергией и питательными веществами.

Кроме того, любое действие по переработке органики (питание) сопровождается формированием и накоплением отходов, которые необходимо выводить за пределы организма.

Решение этих трех важных задач возложено на цитоплазматическую мембрану у бактерий:

  1. Доставка в клеточную среду из внешней среды соединений, обеспечивающих общий метаболизм в организме бактерии (дыхание).
  2. Снабжение бактериальной клетки питательными веществами для извлечения жизнеобеспечивающей энергии.
  3. Вывод отходов во внешнюю же среду.

Не менее важными функциями мембранной конструкции являются:

  • обеспечение постоянного состава внутриклеточного пространства;
  • крепление жгутиков;
  • синтез веществ, необходимых для построения клеточной стенки.

Удивительным является тот факт, что, несмотря на важность и сложность тех функций, которые должна выполнять цитоплазматическая мембрана, ее строение нельзя назвать громоздким или замысловатым. Природа нашла изящное решение, чтобы, использовав минимальный ресурс, создать простую и эффективную систему естественной защиты бактериальной клетки и двустороннего транспорта веществ внутрь и наружу.

Строение

Независимо от того, что ЦПМ (цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае.

Структурные отличия имеются между строением плазматической мембраны грамотрицательных бактерий и грамположительных.

Здесь есть необходимость уточнить, что иногда вносится путаница в определение цитоплазматической мембраны и клеточной стенки бактерии.

Клеточная стенка – отдельная структура бактериальной клетки, которая не определяется как часть ЦПМ, а имеет свое обособленное строение, в основе которого – белковые структуры муреина.

Именно эти структуры, в случае выявления грамотрицательных микроорганизмов, не реагируют на окраску по Граму, что позволяет провести первоначальную идентификацию бактерий.

Поэтому, говоря о грамотрицательных прокариотах, нужно понимать, что в данном случае исследуется не ЦПМ, а клеточная стенка, хотя эти клеточные структуры и находятся друг с другом в непосредственной близости.

Второе важное отличие строения ЦПМ грамотрицательных бактерий – наличие наружной мембраны.

Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:

  1. Двух слоев липидов. Липиды – органические жироподобные вещества, которые характеризуются разной степенью водонепроницаемости (гидрофобностью).
  2. В эти два липидных слоя в буквальном смысле вмонтированы белковые молекулы, которые и отвечают за сообщение между внутренним и наружным пространством бактериальной клетки.

Если у грамположительных бактерий есть только одна ЦПМ, то у грамотрицательных прокариот их две.

Внешний слой такой клетки состоит из:

  • самой ЦПМ, которая соприкасается с цитоплазмой;
  • клеточной стенки, которая состоит из муреина;
  • наружной мембраны, которая имеет такую же бисистему липидов с белковыми комплексами.

Сообщение грамотрицательных бактериальных клеток с внешним миром через такую трехступенчатую структуру не дает преимущества этим микроорганизмам на выживание в более суровых условиях. Эти микробы также плохо переносят высокие температуры, среду с повышенной кислотностью и перепадами внешнего давления.

Хотя, безусловно, и среди грамположительных, и среди грамотрицательных прокариотов есть термофильные и барофильные группы бактерий, которые приспособились к выживанию в экстремальных условиях.

Отдельным образованием ЦПМ является мезосома. Это своеобразное впячивание части самой мембраны внутрь клеточного пространства. Мезосомы играют определяющую роль при делении клетки бактерии.

Состав

Относительно простое структурное устройство ЦПМ бактерий уравновешивается сложностью тех функций, которые возложены на каждый элемент этой системы в отдельности.

Как уже говорилось, мембранная конструкция у микробов состоит из бислоя липидов. Что представляют собой эти липиды, и какую функцию они выполняют:

  1. Бислой ЦПМ содержит определенный вид липидов – фосфолипиды. Это сложные органические вещества с содержанием фосфорной кислоты. Особенность этих органических молекул состоит в том, что их основная часть (головка) является гидрофильной (водопроницаемой), а окончание (хвостик) – гидрофобное (водонепроницаемое). Эту особенность хорошо видно на пространственной формуле этих молекул.
  2. Структура ЦПМ устроена так, что гидрофильные головки образуют наружный слой, а гидрофобные хвостики – внутренний.
  3. Эта структура формирует жидкокристаллическую модель, на которую мозаичным образом крепятся молекулы белков.
  4. Белки, как основные структурные элементы, которые содержит цитоплазматическая мембрана, подразделяются на два основных вида:
    • Группа периферических белковых молекул, которые контактируют как с цитоплазмой, так и с ЦПМ. Основная роль этих комплексов – формировать протонные мостики для транспорта внутрь клетки и за ее пределы.
    • Группа интегральных белков – крупные молекулы, которые полностью погружены в тело мембраны, а иногда даже выходят за ее пределы. ЦПМ содержит огромное количество интегральных белковых комплексов, которые имеют прочные связи с бислоем липидов и не могут дрейфовать вдоль стенок цитоплазматической мембраны, как периферийные белки.

Эта простая схема может быть значительно усложнена у разных групп бактерий. Так, например, мембранный комплекс бактерий-фотосинтетиков состоит не только из указанных белковых комплексов, в нее также внедрены фотосинтезирующие аппараты. Такие мембранные конструкции даже имеют отдельное название – фотосинтетические.

Транспорт

Исходя из того, что ЦПМ состоит из белковых молекул, которые могут строить каналы передачи между цитоплазмой и внешней средой клетки, особый интерес представляет механизм транспорта, который осуществляется через мембранные комплексы.

Активный механизм транспорта ЦПМ

В зависимости от того, какие виды связей используют те белки, из которых состоит мембрана бактерии, транспорт может быть двух видов:

Пассивный транспорт – процесс, который протекает без затраты энергии клеткой. К таким процессам относится транспорт по причине разницы концентраций в растворе. Молекулы более концентрированного раствора передвигаются в менее концентрированный, до тех пор, пока будет установлено определенное равновесие.

Активный транспорт – в нем принимают участие связующие белки. Такой транспорт идет с затратой энергии. В грамотрицательных бактериях транспорт осуществляется также с помощью пермеаз, из которых, в том числе, состоит пространство между внутренней и внешней мембранами грамотрицательных клеток. Пермеазы являются связующим звеном для этих двух бактериальных структур.

Внутренние структуры

Кроме ЦПМ, внутри бактериальных клеток разных групп могут присутствовать обособленные мембранами включения. Эти ограждения, как и цитоплазматический барьер, состоят из липидов и белков. Установлено, что эти мембраны играют роль в метаболических процессах клетки, а также принимают участие в прохождении цикла Кальвина (цикла реакции фотосинтеза у прокариотов).

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Мембрана бактерии: строение, особенности, функционал Ссылка на основную публикацию

на сайте носят исключительно ознакомительный характер. В статьях, описывающих ту или иную болезнь, нет призыва к действию. Если Вы обнаружили у себя подобные симптомы, Вам обязательно необходимо обратиться к врачу! Самолечение может быть опасным для Вашего здоровья!

Источник: https://probakterii.ru/prokaryotes/organelles/membrana-bakterij.html

Цитоплазматическая мембрана ( ЦПМ ) бактерии. Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство

Есть ли мембрана у бактерий

Оглавление темы “Анатомия бактериальной клетки. Физиология бактерий.”:
1. Анатомия бактериальной клетки. Поверхностные структуры бактерии. Капсула бактерий. Организация капсул. Окраска капсул бактерий. Состав капсул. Антигенные свойства капсул.
2. Жгутики бактерий. Расположение жгутиков. Перитрихи. Монотрихи. Политрихи. Лофотрихи. Амфитрихи.

Феномен роения. Диагностика подвижности бактерий.
3. Микроворсинки бактерий. Фимбрии бактерий. F-пили ( секс-пили ) бактерии. Клеточная оболочка бактерий. Гликокаликс.
4. Клеточная стенка бактерий. Функции клеточной стенки. Строение клеточной стенки бактерии. Пептидогликан. Муреиновый мешок. Структура пептидогликана (муреина)
5. Грамотрицательные бактерии.

Клеточная стенка грамотрицательных бактерий. Строение клеточной стенки грамотрицательных бактерий.
6. Грамположительные бактерии. Клеточная стенка грамположительных бактерий. Строение клеточной стенки грамположительных бактерий. Аутолизины бактерий. Сферопласты. Протопласты.
7. Цитоплазматическая мембрана ( ЦПМ ) бактерии.

Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство.
8. Цитоплазма бактерий. Бактериальный геном. Бактериальные рибосомы. Запасные гранулы бактерии.
9. Физиология бактерий. Питание бактерий. Тип питания бактерии. Голозои. Голофиты. Вода. Значимость воды для бактерий.
10.

Усваиваемые бактериальной клеткой соединения. Пути поступления веществ в бактериальную клетку. Пассивный перенос. Диффузия.

Цитоплазматическая мембрана ( ЦПМ ) играет важную роль в обмене веществ бактерий, играя роль осмотического барьера, контролирующего поступление и выход различных веществ из клетки.

Иными словами, ЦПМ — физический, осмотический и метаболический барьер между внутренним содержимым бактериальной клетки и внешней средой.

Состав цитоплазматической мембраны бактерий

Как и многие биологические мембраны, цитоплазматическая мембрана ( ЦПМ ) состоит из двух слоев липидов и встроенных в лигшдную мембрану белковых молекул.

В состав ЦПМ бактерий входят белки (20-75%), липиды (25-40%), углеводы и РНК (последние два компонента присутствуют в незначительных количествах).

Компоненты цитоплазматической мембраны ( ЦПМ ) составляют около 10% сухого веса бактериальной клетки.

Белки цитоплазматической мембраны ( ЦПМ ) подразделяют на структурные и функциональные.

Первые образуют различные структуры цитоплазматической мембраны ( ЦПМ ), вторые представлены ферментами, участвующими в синтетических реакциях на поверхности мембраны и в окислительно-восстановительных процессах, а также некоторыми специализированными энзимами (например, пермеазы). Липиды, входящие в состав ЦПМ, представлены насыщенными или мононенасыщенными жирными кислотами, но не стеринами, как у эукариотических клеток.

Транспортные системыцитоплазматической мембраны бактерий

Для цитоплазматической мембраны ( ЦПМ ) характерна выраженная избирательная проницаемость. В ней располагаются системы активного переноса и субстратспецифичных пермеаз. Некоторые белковые молекулы, «вкрапленные» в фосфолипидный бислой, играют роль «пор», через которые движется регулируемый поток веществ.

У аэробных бактерий и анаэробов, способных к так называемому «анаэробному дыханию», в цитоплазматическую мембрану ( ЦПМ ) встроена система электронного транспорта, обеспечивающая её энергетические потребности.

Самые крупные молекулы, способные проходить через цитоплазматическую мембрану ( ЦПМ ), — фрагменты ДНК.

Мезосомыцитоплазматической мембраны бактерий

Цитоплазматическая мембрана ( ЦПМ ) образует специфические инвагинаты — мезосомы, имеющие вид закрученных в спираль или клубок трубчатых образований. Мезосомы образуют поперечные перегородки между делящимися клетками; к ним обычно прикрепляется бактериальная хромосома.

Периплазматическое пространство

У некоторых бактерий между цитоплазматической мембраной ( ЦПМ ) и клеточной стенкой располагается периплазматическое пространство — полость шириной около 10 нм.

Б периплазматическом пространстве имеются перемычки, соединяющие цитоплазматическую мембрану ( ЦПМ ) и пептидогликановый слой.

Снаружи в периплазматическое пространство открываются поры клеточной стенки, изнутри в это пространство выходят некоторые клеточные ферменты (рибонуклеазы, фосфатазы, пенициллиназа и др.).

– Также рекомендуем “Цитоплазма бактерий. Бактериальный геном. Бактериальные рибосомы. Запасные гранулы бактерии.”

Источник: https://meduniver.com/Medical/Microbiology/45.html

ЭффектЛечения
Добавить комментарий